Taking the Temperature of the Interiors of Magnetically Heated Nanoparticles
نویسندگان
چکیده
The temperature increase inside mesoporous silica nanoparticles induced by encapsulated smaller superparamagnetic nanocrystals in an oscillating magnetic field is measured using a crystalline optical nanothermometer. The detection mechanism is based on the temperature-dependent intensity ratio of two luminescence bands in the upconversion emission spectrum of NaYF4:Yb(3+), Er(3+). A facile stepwise phase transfer method is developed to construct a dual-core mesoporous silica nanoparticle that contains both a nanoheater and a nanothermometer in its interior. The magnetically induced heating inside the nanoparticles varies with different experimental conditions, including the magnetic field induction power, the exposure time to the magnetic field, and the magnetic nanocrystal size. The temperature increase of the immediate nanoenvironment around the magnetic nanocrystals is monitored continuously during the magnetic oscillating field exposure. The interior of the nanoparticles becomes much hotter than the macroscopic solution and cools to the temperature of the ambient fluid on a time scale of seconds after the magnetic field is turned off. This continuous absolute temperature detection method offers quantitative insight into the nanoenvironment around magnetic materials and opens a path for optimizing local temperature controls for physical and biomedical applications.
منابع مشابه
Irreversibility Analysis of MHD Buoyancy-Driven Variable Viscosity Liquid Film along an Inclined Heated Plate Convective Cooling
Analysis of intrinsic irreversibility and heat transfer in a buoyancy-driven changeable viscosity liquid along an incline heated wall with convective cooling taking into consideration the heated isothermal and isoflux wall is investigated. By Newton’s law of cooling, we assumed the free surface exchange heat with environment and fluid viscosity is exponentially dependent on temperature. Appropr...
متن کاملGreen Multicomponent Synthesis of Benzodiazepines in the Presence of CuFe2O4 as an Efficient Magnetically Recyclable Nanocatalyst under Solvent-Free Ball-Milling Conditions at Room Temperature
In this work, an efficient and green procedure for the synthesis of various substituted 1,5-benzodiazepine derivatives via a one-pot three-component catalytic reaction has been described. The reaction was conducted between o-phenylenediamine, dimedone and aldehyde derivatives in the presence of CuFe2O4 nanoparticles as a magnetic heterogeneous nanocatalyst under ball-milling conditions at room ...
متن کاملEfficient Synthesis of Benzo[b]pyrans and Knoevenagel Products Using Magnetically Separable Nano TPPA-IL-Fe3O4
A simple, efficient, and green practical approach to Knoevenagel condensation of malononitrile and different aldehydes has been developed using an ionic liquid functionalized on Fe3O4 magnetic nanoparticles as heterogeneous catalyst. This nanostructural catalyst has also been applied for the synthesis of 4H-benzo[b]pyran derivatives in water at room temperature in short reaction time. All of th...
متن کامل[γ-Fe2O3-HAp-(CH2)3-NHSO3H] nanoparticles as a highly efficient and magnetically separable catalyst for green one-pot synthesis of 4(3H)-Quinazolinones
Quinazolinone derivatives are essential units in a wide range of relevant pharmacophores with a broad spectrum of abilities. Due to their wide range of pharmacological and therapeutic activities including anticonvulsant, anti-inflammatory, hypolipidemic, anticancer, and anti-ulcer, the synthesis of quinazolinone moieties as a privileged class of fused heterocyclic compounds, have received much ...
متن کاملImidazole Functionalized Magnetic Fe3O4 Nanoparticles a Highly Efficient and Reusable Brønsted Acid Catalyst for the Regioselective Thiocyanation of Aromatic and Heteroaromatic Compounds at Room Temperature in Water:Ethanol
The Magnetically recoverable Fe3O4 nanoparticle and the supported brønsted acidic ionic liquid 1-methyl-3-(3-trimethoxysilylpropyl) imidazolium hydrogen sulfate (Fe3O4-IL-HSO4) were synthesized and used as efficient magnetic catalysts for the regioselective thiocyanation of aromatic and heteroaromatic compounds at room temperature in Water: Ethanol. This procedure provided the target thiocyanat...
متن کامل